If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+26x+98=0
a = 1; b = 26; c = +98;
Δ = b2-4ac
Δ = 262-4·1·98
Δ = 284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{284}=\sqrt{4*71}=\sqrt{4}*\sqrt{71}=2\sqrt{71}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{71}}{2*1}=\frac{-26-2\sqrt{71}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{71}}{2*1}=\frac{-26+2\sqrt{71}}{2} $
| (x-1)+2(x+3)=22 | | 3(p-1)=5p | | -4m+2=6m-8 | | 2^(6x)=33 | | 10.7-3x=1.1 | | (X-2)(x+7)=90 | | 125-x=90 | | y/1.01=7.7 | | y/1.01=7. | | 6t+8=2t+16 | | 10+f=17 | | (X+13)^2+(y-15)^2=49 | | -8u+34=2(u+7) | | 2(v-5)=-5v+25 | | 4x-24=6(x-2) | | -2(2x+3)=-4+6 | | 10x+40=9x+3+6x+8 | | (m+9)^2=12 | | 14x-5x=-1 | | 6/u=6 | | -7x+9=-4x-12 | | 10x+38=2x+24 | | d-13=23 | | 2n+8(1/5)=33 | | 5^x=125^2x-5 | | 2/5g=18 | | -0.5x^2+36x-166=0 | | 1/3d=3 | | 4f+3=30+f | | -1/6n=5 | | f+15=3f+7 | | -21=t(3) |